Heegaard Floer homology and Dehn surgery

Problem Set 1

Problem 1. Let $\alpha_1, \alpha_2, \ldots, \alpha_n$ be n mutually disjoint, simple closed curves on a closed oriented surface Σ. Prove that the homology classes $[\alpha_1], \ldots, [\alpha_n] \in H_1(\Sigma)$ are linearly independent if and only if the complement $\Sigma \setminus (\alpha_1 \cup \cdots \cup \alpha_n)$ is connected.

Problem 2. Find a genus 1 Heegaard diagram of S^3, and use it to compute $HF^\infty(S^3), HF^-(S^3), HF^+(S^3)$.

Problem 3. Let

$$(\Sigma, \{\alpha_1, \ldots, \alpha_g\}, \{\beta_1, \ldots, \beta_g\})$$

be a Heegaard diagram of Y. Prove

$$H_1(Y) \cong H_1(\Sigma)/([\alpha_1], \ldots, [\alpha_g], [\beta_1], \ldots, [\beta_g]).$$

Problem 4. Prove the map $\delta: \text{Spin}^c(Y) \to H^2(Y)$ is a one-to-one correspondence.

Problem 5. Suppose $s_1, s_2 \in \text{Spin}^c(Y)$, prove

$$\delta(s_1, s_2) = -\delta(s_2, s_1), \quad c_1(s_1) - c_1(s_2) = 2\delta(s_1, s_2).$$

As a consequence, show that the map $c_1: \text{Spin}^c(Y) \to H^2(Y)$ is injective if $H_1(Y)$ has no 2–torsion.
CODIMENSION ONE FOLIATIONS - PROBLEM SET 1
ICERM - JULY 15, 2019

(1) Let \mathcal{F}_m be the foliation of T^2 described in Lecture 1.

(a) Prove that if $m \in \mathbb{Q} \cup \left\{ \frac{1}{2} \right\}$, then the leaves of \mathcal{F}_m are simple closed curves.

(b) Prove that if $m \notin \mathbb{Q} \cup \left\{ \frac{1}{2} \right\}$, then the leaves of \mathcal{F}_m are injectively immersed copies of \mathbb{R}, and any leaf of \mathcal{F}_m is dense in T^2.

(c) What can you say about the leaf space of \mathcal{F}_m?

(2) An alternate way of viewing \mathcal{F}_m: as a suspension of a homeomorphism of S^1:

Form a foliation \mathcal{G}_ϕ of T^2 as follows. First foliate $[0, 1] \times S^1$ by straight line segments $[0, 1] \times \{ t \}$. Then glue $\{ 1 \} \times S^1$ to $\{ 0 \} \times S^1$ by the homeomorphism $\phi : \{ 1 \} \times S^1 \rightarrow \{ 0 \} \times S^1 : (1, e^{2\pi it}) \mapsto (0 , e^{2\pi imt})$.

Let γ denote the simple closed curve $\{ 1 \} \times S^1$. Revisit the questions of (1a) and (1b) with this model of (T^2, \mathcal{F}_m) in mind.

(3) Denjoy blow-up and Denjoy splitting:

If necessary, consult Wikipedia on the Cantor function $c : [0, 1] \rightarrow [0, 1]$ before proceeding further. Recall that the Cantor function is continuous. Note that under the identification $S^1 = [0, 1]/ \sim$, where $0 \sim 1$, there is a “Cantor function” $c : S^1 \rightarrow S^1$.

Suppose m is irrational, and view \mathcal{F}_m as given by a suspension of ϕ as given in (2). The Denjoy blowup and Denjoy splitting of \mathcal{F}_m along a leaf L is described as follows.

Label the leaves of \mathcal{F} by L_x, where $x \in L \cap \gamma$. Pick any $x \in S^1$, and let $x_n = \phi^n(x)$ for all $n \in \mathbb{Z}$. (Equivalently, pick any leaf L of \mathcal{F}_m and enumerate the countable many points $L \cap \gamma$ as $x_n, n \in \mathbb{Z}$.)

Make the following precise:

(a) “Blow up” S^1 to a longer circle C by replacing each x_n by a compact interval J_n, where the sum of the lengths of the intervals J_n is finite.

(b) Define $\psi : C \rightarrow C$ to agree with ϕ on the complement of the orbit x_n, and extend linearly over the interior of the intervals J_n.

The foliation \mathcal{G}_ψ is called the Denjoy blowup of $\mathcal{F}_m = \mathcal{G}_\phi$ along L_x. Removing the leaves of \mathcal{G}_ψ passing through the interiors of the the J_n results in a foliation \mathcal{F}'_m obtained by Denjoy splitting \mathcal{F}_m open along the leaf L_x. Note that the transverse cross-section $\mathcal{F}'_m \cap \gamma$ is a Cantor set.

Date: July 15, 2019.
Let τ be a train track, and $N(\tau)$ an I-fibered regular neighbourhood of τ. Recall that a curve is \textit{carried by} τ if it can be isotoped to lie in $N(\tau)$ everywhere transverse to the I-fibering. It is \textit{fully carried by} τ if it is carried, with nonempty intersection with each I-fiber. A foliation is carried (respectively, fully carried) by τ if after Denjoy splitting along finitely many leaves, the resulting lamination can be isotoped so that every leaf is carried (fully carried) by τ.

Identify which foliations \mathcal{F}_m are carried (respectively, fully carried) by the train tracks τ shown below. Do these train tracks carry (respectively, fully carry) any other foliations of T^2?